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Abstract .  Worliing within a nlinimalorbitalsp b'asisset with fixedsite energiesand 
a repulsive pairwise interaction we fit a set of hopping integrals and a repulsive pair 
potential to experimental grapllite and diamond band structures, binding energies, 
lattice constants and bulk moduli, and to accurate local density functional data far 
the binding energies and equilibrium volumes of face centred cubic, simple cubic and 
beta tin phases of carbon. W e  find that an approximately inverse cube form for 
the hopping integrals as a function of interatomic separation and an approximately 
inverse ninehalve power for the pair potential leads to an inkproved fit to the data 
including the band structure of graphite. Both the hopping integrals and the pair 
potential are seen to decay more rapidly than similar parameters for silicon, reflecting 
the absence of nuclear screening by core electron states. 

1. Introduction 

Amongst techniques for studying elect,ronic structure and atomic cohesion the tight 
binding method has found favour for its simplicity and its versatility. As a result of 
its relatively light demand on computational resources the method has been widely 
used for atomistic simulations of complex structures as well as for qualitative trends 
across the periodic table. The range of materials that the method has been applied 
to includes hydrogen, sp bonded systems, pd bonded systems and transition metals. 
As recent examples of the use of the method we cite the work of Majewski and Vogl 
on pd bonded binary compounds [I] and that of Cressoni and Pettifor on sp bonded 
solids [2]. For an overview ne  refer the reader to the review article by Finnis ef d [3]. 

A much sought after goal of tight binding is to find for each element a so called 
universal parametrization which would, without modification, be applicable to a whole 
range of bonding environments. In practice a certain degree of transferability can be 
ensured by fitting the parameters to as large a data base as possible, which usually 
means the experimental bulk modulus, the experimental lattice constant and the ex- 
perimental band structure for the equilibrium bulk phase. An exampleof this approach 
is to be found in [4] which includes for carbon a set of parameters fitted to the exper- 
imental diamond lattice constant and the experimental diamond band structure. As 
well as these experimental data there are the results of accurate ab initio local density 
functional (LDF) calculations. The quite remarkable accuracy of these calculations is 
seen from a comparison of the calculated data with experimentally measurable quan- 
tities such as the bulk modulus, the lattice constant and the binding energy of the 
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equilibrium phase. These have provided the energy as a function of volume for many 
different elements in experimentally inaccessible lattice structures [5,6] and raise the 
possibility of improved fits. 

In this paper we use this recent LDA data to improve Harrison's parametrization 
for the hopping integrals and the pairwise potential of carbon [4]. The method used 
is similar to that applied to silicon in two recent papers by Goodwin, Skinner and 
Pettifor 171 and Goodwin and Skinner [SI although the  different^ chemistry of carbon 
leads to a rather different fit. The parametrization is for use in the tight binding bond 
model (TBBM) formulation of Sutton el  a1 [B] which we describe in section 2 of this 
paper. In section 3 we introduce Harrison's parametrization for the hopping integrals 
and the pair potential and present results calculated for some representative bulk 
phases. The results of LDF calculations [6] are used for comparison. In section 4 we 
introduce modifications to Harrison's forms i n  order to improve the modelling of the 
bulk phases. These improvements to the modelling are summarised at  the beginning of 
the section. The modifications are introduced in section 4 via the rescaling method [7, 
81 which we describe in section 4.1. The  fitting process and the results of calculations 
with the fitted parameters are described in section 4.2.  

2. The tight b'iiding bond model 

In this section we briefly describe the tight binding bond model of Sutton el nl  [9]. 
More detailed treatments of the tight binding method in general, and in part,icular 
the repulsive pair potential, are to be forind in [Q-121 

To evaluate the energy we calculate and then sum together three terms referred 
to as the bond energy. the promotion energy arid the repulsive energy: 

= + Epmm + Erep. (1) 

The bond energy (equation (2)) takes into account the energy gain from the for- 
mation of quantum mechanical bonds ignoriiig tlie energy loss due to changes in the 
occupation of the basis orbitals. To calculate this term we find the band energy for 
tlie bonding case and subtract from it  the sum of the electronic energies for isolated 
non-interacting atoms with identical orbital occupations, Denoting each site and each 
orbital type by i and (I, tlie local densities of states by nio (<)  and the energy levels of 
the free atoms by t ie the bond energy is thus as follows 

The local density of states which occurs in tlie above energy terms and in the following 
term is found in the usual fashion by solving the tight binding eigenvalue problem. 

~~ ~~~~~~ The ~~ promotion ~ ~~~~ ~~ 
~~ ~~ energy ~~~ (equation (3)) takes into account the energy loss due to 

changes in the occupation of the basis orbitals. To calculate this term we find the sum 
of the electronic energies for isolated non-interacting atoms in  the ground state and 
subtract off the sum of the electronic energies for isolated non-interacting atoms whose 
orbital occupations are equal t.o those in the bonding state under study. Denoting the 
changes in the orbital occupations by An,, the promotion energy is thus as follows 
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For a structure such as the simple cubic lattice in which the p orbitals are degenerate 
and for which each site is identical the promotion energy is just the difference between 
the s and p site energies multiplied by the change in the s orbital occupation on any 
given site. 

The TBBM includes the so-called local charge neutrality (LCN) approximation in 
which each atom is constrained to have the same number of valence electrons as the free 
atom. The LCN approximation was introduced to provide the model with a simple first 
approximation to self-consistency by preventing unphysically large interatomic charge 
redistributions. For the ideal lattices considered in this paper LCN is automatically 
satisfied by symmetry considerations. For structures in which this is not the case 
LCN can be achieved by adjusting the on-site energies by small amounts using some 
iterative technique [7, 81. 

The repulsive energy (equation (4)) takes into account the non-orthogonality, elec- 
trostatic and exchange-correlation terms in the binding energy. To calculate this term 
we assume that i t  can he approximated by a sum of pairwise interactions with the 
summation over all pairs of atoms. Denoting a pair potential by Vwp(rjj) and an 
interatomic vector by rij the repulsive energy is thus as follows 

The above equations can be differentiated without too much difficulty to provide 
expressions for the forces on the constituent atoms. As an example of the use of the 
atomic forces we refer the reader to a recent study of silicon clusters [7, 81 in which 
the atomic forces were used as input to an annealing algorithm. In this study the 
atomic forces were calculated exactly via an exact diagonalization of the tight binding 
Hamiltonian. 

3. Harrison's parametrization 

In this section we describe briefly Harrison's parametrization for the tight binding 
Hamiltonian and the pair potential of group IV elements 141 

Harrison provides a prescription for both the Hamiltonian and the pair potential. 
The Ramiltonian matrix is constructed i n  the usual fashion [13] from a set of functional 
forms for the two-centre hopping integrals and a set of fixed on-site energies within a 
minimal orbital basis of one atomic-like s orbital and three atomic-like p orbitals. The 
approximation is made that the three-centre terms, the crystal field terms and the 
contributions from more distant neighbours are of secondary importance in describing 
the principal features of the interatomic cohesion. The form of the hopping integrals 
is as given in the following equation: 

There are thus four hopping int,egrals for pure ssu, spu, ppu and ppn hopping. Al- 
though this form is essentially semi-empirical Froyen and Harrison [I41 have attempted 
a theoretical justification of the inverse square form about equilibrium. For the values 
of the hopping integrals a t  equilibrium V,f,m(r,,)) we have taken those values quoted 
by I'apaconstantopoulos [15]. These were obtained by fitting out to third neighbours 
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in a minimal sp basis a set of twc-centre orthogonal hopping integrals and a set of on- 
site energies to a band structure for the equilibrium diamond lattice. Figure I shows 
that we are justified in ignoring the second- and third-neighbour hopping integrals as 
they contribute a negligible amount to the form of the band structure except in the 
top of the valence band which is anyway of little interest to us. These on-site ener- 
gies and nearest neighbour hopping integrals are listed in table 1. The pair potential 
(equation (6)) varies as the inverse fourth power of the interatomic separation with its 
equilibrium value (Vrep(~o)) fitted to ensure exact reproduction of the experimental 
lattice constant v 0 .  The functional form is as follows: 

As with the hopping integrals the inverse quadratic form is semi-empirical based on 
the assumption that the non-orthogonality contribution forms the larger part of the 
repulsive energy. 
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Figure 1. Band structures for diarnond carbon calculated using the tight binding 
parametersof [IS], In ( a )  thcinteractionsextcnd~ut to tlCrdneighbourr,in (a )  ouly 
to first neighbours. Good agreement between the two is seen, demonstrating that 
the second- and third-neighbour interactions play a negligible role. 

Table 1. The equilibrium hopping integrals and on site ciiergies in eV. 

-5.16331 2.28887 -4.43338 3.78614 5.65984 -1.82861 

Results calculated for some bulk lattices using Harrison’s parametrization are given 
in table 2. The table includes for comparison accurate first-principles LDF data  of Yin 
and Cohen [GI. The binding energies were calculated by solving the Hamiltonian 
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Table 2. The equilibrium energies and volumes calculated with Harrison's tight 
binding parametem and with U> LDF method. Units of energy are eV and all volumer 
are normalised to the experimental diamond equilibrium volume. 

Lattice dio sc P-Sn FCC $re 

E T B  -11.51 -8.86 -9.66 -5.99 -10.30 
F -7.69 -5.03 -4.87 -3.10 -7.70 

1.00 1.07 0.95 1.92 1.71 
0.99 0.98 0.98 1.28 1.57 

eigenvalue problem approximately using the recursion method [16] with the continued 
fraction taken to five exact levels and terminated according to the scheme of Beer and 
Pettifor [17]. The calculations were for the binding energy as a function of volume 
per atom for diamond (diu), simple cubic (SC), beta-tin (@-Eh), face centred cubic 
(FCC) and graphite ( g r u )  phases. For the calculations on @-Sn the closeness of the 
first- and second-neighbour distances (see table 3) necessitated the inclusion of both 
first- and second-neighbour hopping integrals in the Hamiltonian (using the same 
functional form for each). For the other four lattices only first neighbour interactions 
were included. A value of the pair potential at equilibriunl Vmp(ro) of 8.68 eV ensured 
the exact reproduction of the experimental lattice constant for the diamond phase. 

Table 3. The neighbour distances for five lattices from ob initio calculations out to 
3.05 A.  Coordination (C) and neighbour index (N) are indicated. 

Lattice gra dia SC P-Sn P-Sn FCC P-Sn S C  dia 9" 

718, 1.41 1.55 1.78 1.79 1.89 2.18 2.23 2.51 2.52 2.60 
I 1 1 1 2 1 3 2 2 2 N 

c 3 4 6 4 a 12 4 0  12 12 6 

We see that qualitatively the parameters have reproduced the trends in the LDF 
data: FCC which is the most closely packed of the lattices is correctly calculated to have 
a large atomic volume per atom and the smallest binding energy of the five phases; 
the SC and @-Sn lattices are correctly calculated to have binding energies which lie 
midway between the diu and FCC binding energies. 

Quantitatively though it must be said that the modelling is poor. A serious short- 
coming of Harrison's parameters is the incorrect modelling of the diu g n z  binding 
energy separation which is both of the wrong sign and three orders of magnitude too 
large as can be seen from table 2. We would expect this to cast serious doubts on 
the results of any surface calculations or indeed on the results from any calculations 
in which like gm some or all of the atomic coordinations are less than four. Secondly 
the binding energy of p-Sn is incorrectly calculated to be less than the binding energy 
of SC. Although both of these structures are experimentally unrealizable we would 
expect this error to show up in the results of calculations on disordered structures in 
which the local atomic environments reflect that seen in either @-Sn or SC. Thirdly the 
equilibrum volume for FCC is about one third larger than the LDF value and again we 
would expect this to cause problems for the study of disordered structures. Fourthly 
all binding energies are far too large and it is easy to believe that this would also 
be the case for other structures not studied here. Lastly the bulk modulus of diu  at 
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3.91 hlbar is in reasonable agreement with the experimental value of 4.42 Mbar the 
error being roughly fifteen per cent. 

4. The new parai i ie t r izat ion 

The previous section has identified a number of shortcomings of Harrison's para- 
metrization some of which we are able to correct for. The first of these is the dta 
g m  equilibrium energy separation which we have found by trial and error can be 
fitted exactly by reducing the pair potential exponent relative to the hopping integral 
exponent. This also has the effect of reducing the calculated binding energies to more 
realistic values as we shall see. The second is the dia bulk modulus which as we will 
show we can fit exactly to the experimental value using the rescaling method [7, 81. 
Lastly we have throughout tlie last section considered only first-nearest neighbour 
interactions with the exception of @Sn. In fact the second-neighbour interactions are 
far from zero. We thus need to reduce the range of the parameters and this we shall 
do, again using the rescaling method. 

4.1. The rescaling method 

In this section we describe the rescaling method [7, 81. 
To understand what we mean by a rescaling imagine the energy plotted against 

nearest neighbour separation for two lattices whose equilibrium lattice constants we 
denote as ro and P I .  Let us suppose that the equilibrium binding energies of each 
lattice closely reproduce the corresponding experimental values, that r,, has been fitted 
exactly to the experimental valuc but that  is considerably too large. In this case the 
plot can be improved by redefining a new horizontal axis according to the definition 

and choosing the function f(r) appropriately. The particular form of equation (7) 
ensures that the equilibrium bond length ro is conserved under the rescaling. Alter- 
natively rather than calculating a set of energy curves and then rescaling the r-axis 
we can replace r wherever it occurs in the parameters and then calculate the energy 
and obtain the same results. Although this may seem trivial it is not. The important 
feature of rescaling as a means to improving the hopping integrals and pair potential 
is the preservation of the equilibrium energy separations. 

A useful identity which follows from rescaling is that the calculated equilibrium 
energies are dependent only on tlie ratio of the hopping integral exponent to the pair 
potential exponent. We can prove this with the following rescaling where s is a free 
variable: 

Substituting R(r )  in place of r in a hopping integral which varies as the inverse inter- 
atomic separation to the power of n and a pair potential which varies as the inverse 
separation to the power m we obtain the following forms: 



A new fight binding parametrization for carbon 3875 

As the equilibrium energies are unchanged by a rescaling they must also be indepen- 
dent of s. By inspection of equations (9) and (10) we see that the equilibrium energies 
are also independent of the hopping integral and pair potential exponents so long as 
their ratio is held constant. 

The  rescaling in equation (8) can be used to fit the bulk modulus to the experi- 
mental value by a suitable choice of the parameter s. Denoting the original calculated 
value of the dia bulk modulus by and the rescaled calculated value by €frw we 
find via some simple algebra the following relationship: 

The following rescaling (equation (12)) can be used to reduce the range of the 
interactions so as to include only the first-nearest neighbour values as originally as- 
sumed. 

R ( ~ )  = r e ( r / r ~ ) " ~ - ( r ~ / r ~ ) ' ~ ~ .  (12) 

Equation (12) provides a smooth drop to zero which starts around an interatomic 
separation equal to rC and whose sharpness is set by the value of n,. As long as the 
cut-off is relatively sharp and the value of rc sufficiently large relative to we need 
not worry about the effect on the bulk modulus which will be negligible as seen from 
the following equation which describes how the truncation affects the bulk modulus: 

4.2. The improved parametrization 

The procedure we have followed for the fitting is as follows. First we adjusted the ratio 
of the hopping integral exponent to the pair potential exponent such that the diu gra 
equilibrium energy separation w a s  given correctly. Then keeping this ratio tixed we 
simultaneously adjusted both exponents according to the rescaling in equation (8) so 
as to correctly reproduce the experimental bulk modulus for the diu lattice. Thirdly 
and lastly we smoothly truncated the parameters using the rescaling in equation (12) 
so as to keep the interactions down to a minimum and also ensure a reasonable value 
for the FCC equilibrium volume. This leads to the following forms for the hopping 
integrals and the pair potential: 

The values from the fitting are thus 2.796 and 4.455 for the hopping integral and the 
pair potential exponents and 2.32 A and 22 for T, and n,. 

Results calculated with the rescaled parameters are summarized in table 4. The 
calculational details are as given in section 3 with the equilibrium value of the pair 
potential (VEp(ro)) equal to 10.92 eV. The bulk modulus is of course exactly equal to 
the experimental value of 4.42 Mbar. 

The results table shows that the improvement in the modelling is not limited just 
to the bulk modulus, the dia gra energy separation and the range of the parameters. I t  
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Table 4. The equilibrium energies and volumer calculated with the rescaled tight 
binding parameters. The corresponding LDF data w e  to be found in table 1 .  Units 
of energy are eV and the volumes are nonnelized to the dio equilibrium ualumc. 

Lattice dia sc P-Sn FCC grcl 

ETB -7.03 -3.48 -4.06 -1.76 -7.06 
1.00 1.24 1.14 1.31 1.65 

also includes a considerable improvement in the absolute values of the binding energies 
for all of the lattices. These were previously much too large. In addition the FCC 
equilibrium volume has been markedly improved although this has been at  the expense 
of the @-Sn and SC equilibrium volumes. In figure 2 the improved hopping integrals 
have been plotted as a function of the interatomic separation. The figure shows that 
the improved hopping integrals tend rapidly to zero before second neighbours for all 
lattices except the 0-Sn lattice (see table 3 for neighbour separations). In figure 3 the 
band structure for the g m  lattice calculated with the improved parameters is shown 
alongside a band structure calculated using a set of tight binding parameters fitted 
to the equilibrium gru structure. The figure illustrates that the improved parameters 
lead to a reasonable reproduction of the qualitative features of the bauds although the 
p p ~  band is rather narrower than it should be [18]. 

8 

0 4  
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0, 
a, 
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0 7  
C 
a 
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L 

4- 

'- 0 
.- 

2 -4 

-8 
1 .o 1.5 2.0 2.5 

interatomic seoaroiion 
Figure 2. Tlie fitted hopping integrals plotted as a function of interatomic separa- 
tion. The neighbour distances are given in table 3. 

5. Discussiou 

It is interesting to compare the form of the parameters for carbon with a set recently 
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Figure 3. Tight binding band structures calculated for papbite carbon. (a)  war 
calculated using the parameters from [IS], which were obtained by fitting directly 
to M experimental band structure, which is consequently faithfully reproduced. (6) 
war  calculatedusing the improved parameters from this paper. Comparison between 
the two shows that the improved parameters reproduce the essential features of the 
graphite band structure. 

obtained for silicon [7, 81 which is also a Group IV element. For silicon it was found 
that the hopping parameters could each vary approximately as the inverse square of the 
interatomic separations and the pair potential as the inverse fourth power. In contrast 
the carbon parameters vary inversely with interatomic separation with powers of 2.796 
and 4.455. This is commensurate with a high value of the bulk modulus for the dia 
lattice as is seen from equations (9), (IO) and (11). This in turn is a reflection of 
the absence of core p states which would otherwise screen more effectively the nuclear 
Coulomb potential. 

6. Conclusion 

In conclusion we have shown that Harrison’s hopping integrals and pairwise potential 
can be improved by two modifications. These are: firstly a considerably more rapidly 
varying form for the hopping integrals and a slightly more rapidly varying form for the 
pair potential and secondly a shortening of the range of the interatomic interactions. 
This last is important as i t  allows the use of  the parameters in molecular dynamics 
simulations. The original forms were unsuitable due to the use of an arbitrary in- 
teraction cut-off. The modifications lead to an acceptable band structure for gra, an 
improved bulk modulus and improved equilibrium energies and volumes for the bulk 
lattices studied and in particular for the diu gru binding energy separation which is 
now essentially exact. The improved parameters should give improved results for the 
study of a wide range of structures. 
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